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Abstract 

Despite numerous advancements in reading comprehension (RC) models, many fail to 

adequately account for the role of memory in word sense-making and the dynamic construction 

of mental representations during reading. Existing computational approaches focus heavily on 

mechanistic processes like word identification and disambiguation, often neglecting how 

memory storage and retrieval shape comprehension in real-time, adaptive contexts. To address 

these limitations, we propose a Hierarchical Graph Attention Network (HGAN) that models 

memory storage, activation, and retrieval processes in RC. Our model integrates linguistic 

propositional arguments and experimental constraints within a neuro-symbolic architecture to 

emulate modular subsystems, balancing external task complexity with internal cognitive 

representations. Additionally, an encoder-decoder network is employed alongside a "Take the 

Best" algorithm to enable rapid, computationally efficient inference of text, leveraging 

multimodal sense data to construct interpretable mental representations. This novel framework 

offers a theoretically robust and computationally efficient model of memory-driven reading 

comprehension, bridging symbolic and connectionist paradigms to capture the evolving interplay 

of memory, reasoning, and contextual adaptation. 

 

Background 

Reading Comprehension: A Cognitive Challenge 

Reading comprehension (RC) is among the most fundamental yet cognitively complex 

processes that individuals engage in (Duke and Carlisle, 2010). Transforming linguistic symbols 
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into meaningful concepts, retaining that information, and drawing upon it when needed has been 

the focus of intense theoretical and empirical study for decades (Joshi, 2000; Duke, 2010; 

Perfetti, 2014).  

Existing RC models, such as the Componential and Active View models, have 

highlighted key factors influencing comprehension, including inference-making strategies, 

background knowledge, and individual motivation (Joshi and Aaron, 2000; Duke and Cartwright, 

2021). These models provide valuable insights into the interplay of cognitive and social 

differences that shape RC ability. However, these models have struggled to account for how such 

factors influence RC in real-time, dynamic environments with variable contextual stimulus. 

This challenge is further complicated by fundamental questions about how memory 

systems store and retrieve information and how these processes interact with external stimuli. As 

argued in scholarship of enactivist cognition, phenomenological sense—the ability to make 

meaning from experiences—emerges from a combination of prior memory activations and the 

integration of novel perceptual stimuli (Gallagher, 1997; Gallagher 2017). This suggests that 

traditional RC models that do not account for prior memory may fall short of fully capturing the 

fluidity and complexity of underlying cognitive processes that inform comprehension, 

particularly as they unfold over time and across different contexts. 

 

The Promise of Hierarchical Graph Attention Networks 

To address these challenges, Hierarchical Graph Attention Networks (HGANs) offer a 

novel framework for modeling the intricate cognitive processes underlying RC. HGANs enable 
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the representation of cognitive and contextual factors as nodes and encode their relationships as 

edges within a dynamic, hierarchical structure (Veličković et al., 2017; Sobolevsky 2021). Unlike 

static models, HGANs can provide an interpretable framework for integrating multimodal 

perceptual inputs from the environment, allowing the model to adapt to shifting task demands 

(Schapiro et al., 2012; Nastase et al. 2021). 

This dynamic modeling approach situates cognition as an active, embodied process, 

capable of accounting for both individual differences and contextual influences. HGANs provide 

a mechanism to operationalize the factors associated with traditional RC theories by mapping the 

interactions of cognitive subsystems and their contributions to memory and comprehension. 

Through these structures, HGANs can capture the evolving mental representations that underpin 

RC, offering a more comprehensive and interpretable model of this critical cognitive process. 

 

Theoretical Framework 

Reasoning and memory are foundational cognitive processes that underpin reading 

comprehension and mental representation. A key component of reading comprehension is the 

ability to infer word meanings and causal relationships within a given text (Duke, 2010; Perfetti, 

2014). This inferencing process is critical for transforming linguistic symbols into meaningful 

concepts and for constructing coherent mental representations of the information being read. 

 

Reasoning 
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Traditional reasoning models suppose a multitiered memory system in which short-term 

and long-term memory constraints influence one’s capacity for reasoning (Rugg, 2003; Chun, M. 

M. & Turk-Browne, 2007). In this view, mental objects are accessed and manipulated either 

simultaneously or in rapid succession within working memory to determine the veridicality of 

facts or predictions. Practically speaking, a reasoning algorithm must account for two primary 

components: (a) the characteristics and dimensions of the objects being reasoned over and (b) the 

selection algorithm that organizes and sequentially transforms mental objects. The relationship 

between these two components determines the ability of an information processing system (IPS) 

to engage in effective reasoning. As Simon (1990) observed, reasoning is dependent on “the 

structure of task environments and the computational capabilities of the actors (Simon 1990).” 

These components allow for either the construction or decomposition of objects into features and 

sub-features across multiple time steps. This process allows objects to be re-analyzed and 

defined, updating mental states, activating memory, and enabling decision-making to address 

underlying goals.  

 

Memory 

Memory serves as the foundation for reasoning, enabling the storage, retrieval, and 

manipulation of mental objects (Hayes et al., 2014; Sherman et al., 2023). Traditional theories of 

memory emphasize a multitiered structure, where short-term and long-term memory constraints 

influence the process of reasoning (Atkinson & Shiffrin, 1968; Baddeley & Hitch, 1974). These 

systems allow for the rapid retrieval of heuristics from long-term memory to facilitate quick 
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decisions, while deliberative operations in working memory enable more accurate reasoning by 

engaging mental objects in greater depth (Tversky & Kahneman, 1974; Squire, 2009). 

In this view, specific memories are retrieved and operated over in workspaces. According 

to alternative views, such as those put forward by Sherman et al. (2023), memory is understood not 

simply as an archive of past experiences but as a dynamic interplay between previous experience 

and novel perceptual stimuli. These patterns are influenced by prior experiences and 

continuously shaped by ongoing perceptual inputs, leading to novel mental representations. 

Downstream reasoning is thus viewed as a set of mental operations over retrieved and generated 

representations. This iterative process of memory activation and updating of continually 

changing mental representations brings into question discrete representations of memories and 

mental objects.  

Recent advances in cognitive neuroscience corroborate these more dynamic theories of 

memory storage, suggesting that activation patterns across seemingly disparate brain regions are 

not redundancies but instead contribute meaningfully to memory activation and retrieval 

processes (Sherman et al., 2023). These relationships influence both attentional mechanisms—

guiding the generation of objects from the total set of perceptual stimuli—and the 

phenomenological experience of these objects, encompassing both unconscious and conscious 

appraisals (Baars et al., 2021; Sherman & Turk-Browne, 2024). These findings challenge traditional 

theories of multi-part memory systems, the use of heuristics, and unitary representations within 

localized brain regions, leading to more dynamic models and theories of memory activation. 

 

Challenges With Current Reading Comprehension Models 



7 

HIERARCHICAL GRAPH ATTENTION NETWORKS FOR MEMORY MODELING 
 

 
While reasoning and memory are foundational to reading comprehension, existing RC 

models fail to capture the nuance and relationship between these two processes. A majority of 

models of RC do not fully account for how memory retrieval and reasoning processes adapt to 

contextual demands or integrate perceptual inputs to construct meaningful representations. This 

has resulted in a gap between models that can bridge mechanistic processes, such as word 

identification, with higher-order cognitive functions, such as inference and decision-making. 

RC models fall into two camps: Connectionist vs. Symbolic. Connectionist models, while 

powerful in their focus on mechanistic processes, often struggle to incorporate higher-order 

cognitive factors, such as individual differences and ecological variables. Rule-based, symbolic 

models, on the other hand, rely on static frameworks that fail to adapt to dynamic, real-world 

environments where contextual factors influence cognition. These models have also been 

criticized for their inability to represent the full complexity of mental processes, particularly in 

how memory and reasoning interact to construct meaningful representations (Sprevak, 2023). 

Moreover, traditional memory models often assume distinct, competing subsystems for 

short- and long-term storage. This segmentation has been called into question by growing 

evidence suggesting that brain regions associated with memory are part of a more unified 

network, where overlapping activation patterns contribute to memory retrieval and application 

(Sherman et al., 2023). Current models also struggle to account for the relational and 

dimensional characteristics of mental objects—features that influence reasoning accuracy and the 

ability to adapt to novel tasks (Kendeou & O'Brien, 2018). 

 

Model Architecture 
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To address these challenges, the proposed model leverages a Hierarchical Graph 

Attention Network (HGAN) architecture, designed to integrate perceptual inputs, memory 

retrieval processes, and reasoning mechanisms into a unified, context-sensitive framework. The 

model has four distinct parts, (a) an encoder network responsible for attenuating to relevant 

objects and distilling mental representations into memory; (b) an HGAN memory network 

representative of underlying neurological imaging data; (c) a decoder network that processes the 

memory network data into operable mental objects; and (d) a reasoning module that aggregates 

and reasons over the generated mental objects utilizing a Take the Best Algorithm. 

 

Encoder Network 

The model leverages a series of encoder networks that consolidate perceptual stimulus 

into an integrated HGAN-based memory network. Each level in the encoder can be specified to 

possess certain values or can be instantiated with the outputs of a discrete, symbolic modular 

system. Additionally, compared to a fully encapsulated system, this structure allows complex 

reorganization in the training process. A fully encapsulated, modular system can be used to 

produce outputs that would be used to constrain a particular layer. (a) Contains an attention map 

that allows the model to attenuate to various objects in the environment. This attention map is 

refined during the backpropagation of the training phase. (b) The implementation of sub features 

as constrained nodes derived from relevant modular or connectionist sub systems. I.e. 

phonographic, orthographic, syntactic processing units, etc. (c) Distillation of relevant features, 

via encoding. Aggregates the influence of such features on an output node. (d) The Output node 

corresponds to a memory key value that (in combination with other perceptual encoder 
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networks) leads to particular activation of memory, which subsequently triggers the propagation 

of activation patterns across the memory network, forming a cascade of contextually relevant 

mental states and representations. This means that the encoded features serve as keys or cues that 

access and retrieve relevant stored information within memory that will be useful for later 

downstream processes. 

 

Memory Network 

The memory network architecture is informed by an enactivist interpretation of embodied 

cognition that simultaneously accounts for and integrates perceptual stimuli from the 

environment and individual information processing subsystems into memory. As such, inputs 

from across perceptual modalities are distilled and consolidated to operate on a shared 

underlying graphical representation of active brain regions and neural activity. First, neural 

imaging of brain regions is conducted. Second, relevant features are extracted via pretrained 

convolutional neural networks. Third, identified brain activation patterns are converted to 

graphical representations and labeled with respect to the relevant behavioral data. In this case, 

the sequencing of word identification. The result is a graphical representation that captures 

neural activation patterns associated with word identification in corresponding brain regions. 

Varying activations result in differentiable weighting of nodes and edges. Fourth, the 

aforementioned graphical representations are aggregated to create a unified HGAN. Connections 

between nodes with temporally or functionally correlated activation patterns are established. 

Fifth, an additional layer is created, synthesizing activated nodes into consolidated graphical 

representations, allowing for a compressed representation of underlying brain activation patterns. 
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Decoder Network 

The decoding process begins with the transformation of graphical data from the memory 

network into structured representations. During decoding, the network translates the graphical 

data in memory into structured representations that mirror the actions or decisions made during 

reading comprehension tasks. These outputs capture how specific mental representations or 

memory activations contribute to key processes, such as inferencing, word disambiguation, or 

the integration of new information. Errors in prediction are corrected through backpropagation 

during training, ensuring that the decoder refines its outputs to closely match observed outcomes 

while preserving interpretability. 

Similar to the encoder network, several deep learning layers integrate propositional and 

linguistic constraints. These constraints are preconfigured functions within respective deep 

learning layers that serve to guide the model during training. These constraints may include 

perceptual stimuli and word-sense categories. The interjection of such constraints simulate 

modular output that can be operated over by the neural network. 

The result is symbolic and connectionist representations that self-organize to predict a set 

of operable mental representations. These representations, given their unique processing history, 

possess respective weights that will be aggregated into a Take Best Reasoning Algorithm. Node 

weights represent the sparsity and dimensionality of mental representation. The nodes are 

aggregated and used to predict the first likely satisficing optimum for a constrained reasoning 

task, this being word-sense making.  
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Take Best Algorithm 

To model this process, we leverage the Take Best Algorithm, which offers greater 

computational efficiency and better predict human decision making compared to traditional 

reasoning models (Gigerenzer & Goldstein, 1996). In this model, the activation of underlying 

memory, combined with discrete mental processes, generates contextually relevant mental 

representations of external objects. Given additional stimuli—such as task demands or 

directions—these representations and their underlying values are used to predict next action 

states or satisfy a generative process leading to a “satisficing” local optimum. This optimum 

aggregates the set of mental representations to compute a choice or next action that maximizes a 

contextually relevant reward function. This reward function is variable, influenced by the 

characteristics, dimensions, and sequencing of the underlying mental representations. This results 

in a streamlined decision-making process, where the Take Best Algorithm efficiently translates 

mental representations from the decoder into some deliberative response that aligns with 

environmental and task-specific demands. 

 

Results and Outcomes 

Validation 

The HGANs will be trained and tested on existing neurological and reading 

comprehension datasets such as the “Alice” and “Narratives” datasets to evaluate their predictive 

accuracy and interpretability (Bhattasali et al., 2020; Nastase et al., 2021). Their performance will be 
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compared directly with traditional RC models to assess improvements in predicting 

comprehension outcomes. Optimization techniques, such as minimizing loss and error rates, will 

refine the models during training, while testing on unseen data will ensure their generalizability. 

By incorporating reinforcement learning and human feedback, the HGANs will be further 

adapted to capture cognitive processes effectively. This approach will allow the HGANs to 

provide more accurate and interpretable predictions of comprehension outcomes compared to 

traditional assessments. 

 

Anticipated Model Outcomes 

The proposed HGAN model is expected to deliver a robust, dynamic framework for 

representing memory storage, retrieval, and activation processes. By integrating modular 

subsystems and attention mechanisms, the model will generate stimulus-agnostic memory 

representations capable of adapting dynamically to task and environmental constraints. These 

representations will be discrete and interpretable, enabling the transformation of perceptual 

stimuli into higher-order mental constructs. By minimizing representational errors through the 

integration of linguistic and propositional constraints, the model ensures alignment with real-

world data and experimental findings. Furthermore, its scalable architecture and integration of 

the Take Best Algorithm provides a computationally efficient framework for full scale cognitive 

models, extending beyond reading comprehension to support more general reasoning and 

inference-making tasks. 

Such a model has significant theoretical and experimental implications within reading 

comprehension and beyond. By integrating connectionist and symbolic frameworks into a 
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unified neuro-symbolic architecture via HGANs, this model operationalizes theories of memory 

activation and embodied cognition while remaining dynamic and interpretable. Such research 

advances understanding of how overlapping neural activation patterns contribute to memory 

retrieval and sense-making. Furthermore, the model provides a practical framework to test 

hypotheses about the sequencing and weighting of activation patterns, addressing persistent 

challenges in traditional memory models.  
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Appendix 

Figure 1. Encoder 

 

 

 

 

 

 

 

 

Description: Each level in the decoder can be specified to possess certain values, or can be 

instantiated with the outputs of a discrete, symbolic modular system. Additionally, compared to a 

fully encapsulated system, this structure allows complex reorganization in the training process. A 

fully encapsulated, modular system can be derived from the training paradigm. This trained, 

modular system can then be applied to out of distribution tasks. (a) The processing of a singular 

observed object into the encoder network. (b) The process of feature extraction. (c) The 

distillation of relevant features. (d) The most relevant features are reduced to a set of memory 

activation keys that will later act upon the memory network. (e) The encoder output instantiates 

some change in the memory network, given its specific key value. 

 

(a). 

(b). 

(c). 

(d). 

(e). 
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Figure 2. Decoder Network 

 

 

 

 

 

 

 

 

 

 

 

Description: The decoder network operates similarly to the encoder network, however, the 

decoder disambiguates the changes in the activation patterns within the memory network as a 

result of the encoding key value. (a) As a result of the encoder key value, the specific activation 

functions within the memory network are updated. (b) Most relevant activation patterns are 

attenuated to. (c) Information is processed up to a set of discrete nodes and learned weights. (d) 

The discrete nodes and learned weights in (c), in addition to a task demand, are aggregated in a 

Task Best Algorithm to select for the satisficing option.      

(a). 

(b). 

(c). 

(d). 
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Figure 3. Memory Network 

 

 

 

 

 

 

 

 

 

 

 

 

Description: (a) Localized brain activation data is processed through a pretrained convolutional 

neural network, which identifies relevant features and activation patterns. (b) The strength and 

boundaries of activation patterns are recorded. (c) Activation pattern data is transformed into 

localized graph networks. (d) Local graph networks are synthesized into an HGAN. (e) The 

original HGAN is abstracted, such that each node represents a pattern of activated lower level 

nodes.  

(a). 

(b). 

(c). 

(d). 

(e). 


